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Schematic of the experimental setup. AOM - acousto-optical modulator, Rb - Rubidium  
vapor cell, PBS - polarizing beam-splitter, λ/2 - half wave plate, λ/4 - quarter wave 
plate, IF - interference filter.  Dichroic atomic vapor laser lock setup (DAVLL) serves as a 
reference and ensures the required stability of frequency.

Sections of the difference between optical densities induced by optical pumping as 
directly seen by the CCD camera

It is directly proportional to the change of density of atoms in Δρ F =1 state.g(x,y) 

For each delay time t we record a spatial intensity distribution of the probe beam with
and without optical pumping. The quantity we are interested in is the difference in 
optical density for the probe beam induced by optical pumping.

One way to analyze the data is to fit a gaussian to the spatial distribution of optical 

density difference. It spreads according to the following formula:                                      .

Laser pulse sequence used in the experiment with energy level structure of Rubidium 
87.

Another way is to take the 
Fourier transform in the 

spatial coordinates of a set of 
collected images. The 

absolute value of a 

component of with a 

certain spatial periodicity 
decays exponentially in time 
at a rate  dependent on the 

length of k quadratically. 
Example decays are show on 

the figure.   
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Having collected decay rates for 
various elements of the Fourier 
transform we perform angular 
averaging in the  space. To 
extract the diffusion coefficient 
D it is now enough to fit 
quadratic dependence to 

k

(|k|). One needs to add a 
constant  that describes 

relaxation.

°
°0

Diffusion is one of the main limitations for storage time in multimode atomic vapor 
memories. It can be significantly suppressed by adding neutral buffer gas, like Ne, Kr or 
Xe. Various results for diffusion coefficients of rubidium in buffer  gases are either not 
precisely measured or unknown. It is a serious obstacle, when it comes to planning 
experiments or conducting simulations.

We present a very robust and simple method to determine diffusion coefficients of 
atoms in vapor cells. We also present normalized diffusion coefficients, notably the 
second published result for rubidium in Xe. Our result is consistent with the result 
published in [1], which had been acquired with more complex method.

Buffer gas
2

D  [cm /s]0

Our Results

2
D [cm /s]0  

Chapman-Enskog theory

Neon 0.18(0.03) 0.145

Krypton 0.07(0.01) 0.064

Xenon 0.052(0.006) 0.055

Normalized (273 K, 1 atm) results for diffusion coefficients for Rubidium in various 
buffer gases compared with prediction based on Chapman-Enskog formula with 
atomic parameters taken from [2].
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5 Torr Ne, D=29.5 cm2/s
0.5 Torr Kr, D=133 cm2/s
1 Torr Kr , D=45 cm2/s
data for 5 Torr Ne
data for 0.5 Torr Kr
data for 1 Torr Kr
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exponential fit; =5.32 kHz°
data for |k|=2.16 cm-1

exponential fit; °=10.65 kHz
data for |k|=4.62 cm
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IV. Fourier domain analysis
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