Direct observation of diffusion in warm atomic vapors

Michał Parniak*, Wojciech Wasilewski

Insitute of Experimental Physics, University of Warsaw, Hoża 69, 00-681, Warsaw, Poland

•

*michal.parniak@student.uw.edu.pl

I. Introduction

Diffusion is one of the main limitations for storage time in multimode atomic vapor memories. It can be significantly suppressed by adding neutral buffer gas, like Ne, Kr or Xe. Various results for diffusion coefficients of rubidium in buffer gases are either not precisely measured or unknown. It is a serious obstacle, when it comes to planning experiments or conducting simulations.

We present a very robust and simple method to determine diffusion coefficients of atoms in vapor cells. We also present normalized diffusion coefficients, notably the second published result for rubidium in Xe. Our result is consistent with the result published in [1], which had been acquired with more complex method.

II. Experimental methods

III. Spatial domain analysis

One way to analyze the data is to fit a gaussian to the spatial distribution of optical density difference. It spreads according to the following formula: $\sigma(t) = \sqrt{\sigma_0^2 + 4Dt}$.

Schematic of the experimental setup. AOM - acousto-optical modulator, Rb - Rubidium vapor cell, PBS - polarizing beam-splitter, $\lambda/2$ - half wave plate, $\lambda/4$ - quarter wave plate, IF - interference filter. Dichroic atomic vapor laser lock setup (DAVLL) serves as a reference and ensures the required stability of frequency.

Sections of the difference between optical densities induced by optical pumping as directly seen by the CCD camera

 $P_{3/2}$ $z = P_{1/2}$ $P_{3/2}$

Laser pulse sequence used in the experiment with energy level structure of Rubidium 87.

For each delay time t we record a spatial intensity distribution of the probe beam with and without optical pumping. The quantity we are interested in is the difference in optical density for the probe beam induced by optical pumping.

$$\Delta_{OD}(x,y) = \ln \frac{I_{pumping}(x,y)}{I_{no \ pumping}(x,y)} = \alpha L \Delta \rho(x,y)$$

It is directly proportional to the change of density of atoms $\Delta \rho(x,y)$ in F_g=1 state.

References:
[1] Chrapkiewicz, R., Wasilewski, W., & Radzewicz, C. (2013). How to measure diffusional decoherence in
multimode Rubidum vapor memories? preprint: http://arxiv.org/abs/1304.5396
[2] Ghatee, M. H., & Niroomand-Hosseini, F. (2007). Hard-wall potential function for transport properties of

alkali metal vapors. The Journal of chemical physics, 126(1), 014302. doi:10.1063/1.2403879

Having collected decay rates for various elements of the Fourier transform we perform angular averaging in the **k** space. To extract the diffusion coefficient D it is now enough to fit quadratic dependence to $\gamma(|\mathbf{k}|)$. One needs to add a constant γ_0 that describes relaxation.

Buffer gas	<i>D</i> _o [cm ² /s] Our Results	<i>D</i> _o [cm ² /s] Chapman-Enskog theory
Neon	0.18(0.03)	0.145
Krypton	0.07(0.01)	0.064
Xenon	0.052(0.006)	0.055

Normalized (273 K, 1 atm) results for diffusion coefficients for Rubidium in various buffer gases compared with prediction based on Chapman-Enskog formula with

Q-ESSENCE (Contract No. 248095), National Science Centre grant no. DEC-8 2011/03/D/ST2/01941 and by Polish NCBiR under the ERA-NET

This work was supported by the Foundation for Polish Science TEAM project, EU European Regional Development Fund and FP7 FET project

.